Гидратная теория растворов Д. Менделеева (представлять). Химическая теория растворов Д. И. Менделеева Тепловой эффект процесса растворения Кто является сторонником физической теории растворов

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Основные способы выражения концентрации растворов

Количественный состав раствора чаще всего оценивают при помощи понятия концентрации , под которым понимают содержание растворенного вещества (в определенных единицах) в единице массы (объема) раствора (растворителя). Основными способами выражения концентрации растворов являются следующие:

1. Массовая доля вещества (x )  это отношение массы данного компонента x, содержащегося в системе, к общей массе этой системы:

Единицей количества вещества является моль, т. е. то количество вещества, которое содержит столько реальных или условных частиц, сколько атомов содержится в 0,012 кг изотопа С 12 . При использовании моля как единицы количества вещества следует знать, какие частицы имеются в виду: молекулы, атомы, электроны или другие. Молярная масса М(х)  это отношение массы к количеству вещества (г/моль):

3. Молярная концентрация эквивалента С(x )  это отношение количества эквивалента вещества n(x) к объему раствора V р-ра:

Химический эквивалент – это реальная или условная частица вещества, которая может замещать, присоединять или высвобождать 1 ион водорода в кислотно-основных или ионообменных реакциях.

Так же, как молекула, атом или ион, эквивалент безразмерен.

Масса моля эквивалентов называется молярной массой эквивалента М(x ). Величина называется фактором эквивалентности . Она показывает, какая доля реальной частицы вещества соответствует эквиваленту. Для правильного определения эквивалента вещества надо исходить из конкретной реакции, в которой это вещество участвует, например, в реакции взаимодействия Н 3 РО 4 с NaOH может происходить замещение одного, двух или трех протонов:

1. H 3 PO 4 + NaOH  NaH 2 PO 4 + H 2 O;

2. H 3 PO 4 + 2NaOH  Na 2 HPO 4 + 2H 2 O;

3. H 3 PO 4 + 3NaOH  Na 3 PO 4 + 3H 2 O.

В соответствии с определением эквивалента, в 1-й реакции замещается один протон, следовательно, молярная масса эквивалента вещества равна молярной массе, т. е. z  l и . В данном случае:

Во 2-й реакции происходит замещение двух протонов, следовательно, молярная масса эквивалента составит половину молярной массы Н 3 РО 4 , т. e. z  2, а
. Здесь:

В 3-й реакции происходит замещение трех протонов и молярная масса эквивалента составит третью часть молярной массы Н 3 РО 4 , т.е. z  3, a
. Соответственно:

В реакциях обмена, где непосредственно не участвуют протоны, эквиваленты могут быть определены косвенным путем, введением вспомогательных реакций, анализ результатов которых позволяет вывести правило, что z для всех реакций равен суммарному заряду обменивающихся ионов в молекуле вещества, участвующего в конкретной химической реакции.

1. AlCl 3 + 3AgNO 3 = Al(NO 3) 3 + 3AgCl.

Для AlCl 3 обменивается 1 ион Al 3+ с зарядом +3, следовательно, z = 13 = 3. Таким образом:

Можно также сказать, что обмениваются 3 иона хлора с зарядом 1. Тогда z = 31 = 3 и

Для AgNO 3 z = 11 = 1 (обменивается 1 ион Ag + с зарядом +1 или обменивается 1 ион NO 3  с зарядом 1).

2. Al 2 (SO 4) 3 + 3BaCl 2 = 3BaSO 4  + 2AlCl 3 .

Для Al 2 (SO 4) 3 z = 23 = 6 (обменивается 2 иона Al 3+ с зарядом +3 или 3 иона SO 4 2  с зарядом 2). Следовательно,

Итак, запись С(H 2 SO 4) = 0,02 моль/л означает, что имеется раствор, в 1 л которого содержится 0,02 моль эквивалента H 2 SO 4 , а молярная масса эквивалента H 2 SO 4 составляет при этом молярной массыH 2 SO 4 , т. е. 1 л раствора содержит
H 2 SO 4 .

При факторе эквивалентности молярная концентрация эквивалента равна молярной концентрации раствора.

4. Титр Т(x ) – это отношение массы вещества к объему раствора (в мл):

6. Мольная доля N(x ) – это отношение количества вещества данного компонента,содержащегося всистеме, к общему количеству веществ системы:

Выражается в долях единицы или в %.

7. Коэффициентом растворимости вещества Р(x ) называют максимальную массу вещества, выраженную в г, которая может раствориться в 100 г растворителя.

1.2 ОСНОВНЫЕ НАПРАВЛЕНИЯ В РАЗВИТИИ ТЕОРИИ РАСТВОРОВ

Физическая теория растворов. Развитие взглядов на природу растворов с древних времен было связано с общим ходом развития науки и производства, а также с философскими представлениями о причинах химического сродства между различными веществами. В 17 и в первой половине 18в. широкое распространение в области естественных наук и философии получила корпускулярная теория растворов. В этой теории процесс растворения рассматривался как механический процесс, когда корпускулы растворителя входят в поры тел и отрывают частицы растворяемого вещества, которые занимают поры растворителя образуя единый раствор. Такие представления первоначально удовлетворительно объяснили тот факт, что данный растворитель может растворять не все вещества, а только некоторые.

В начале 19в. создаются предпосылки для развития физической теории растворов, которая явилась обобщением ряда исследований. Физическая теория растворов, возникшая главным образом на основе работ Я. Вант-Гоффа, С.Аррениуса и В. Оствальда, опиралась на экспериментальное изучение свойств разбавленных растворов (осмотическое давление, повышение температуры кипения, понижение температуры замерзания раствора, понижение давления пара над раствором), зависящие главным образом от концентрации растворенного вещества, а не от его природы. Осмос -это самопроизвольное проникновение растворителя в раствор, отдаленный от него полупроницаемой перегородкой, через которую может поступать растворитель, не может, проходит растворенное вещество.

Раствор и растворитель, разделенные полупроницаемой перегородкой можно рассматривать как две фазы. Равновесие растворителя по обе стороны от перегородки выражается равенством его химического потенциала в растворе (к которому приложено дополнительное давление)и химического потенциала чистого растворителя .

Количественные законы (Вант-Гоффа, Рауля) были интерпретированы в продолжении,что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступление от этих законов,наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации С.Аррениуса.

Аналогия между сильно разбавленными растворами и газами многим ученым показалась столь убедительной,что они стали рассматривать процесс растворения как физический акт. С точки зрения этих ученых растворитель является только средой, в которую могут диффундировать частицы растворенного вещества. Простота представлений физической теории растворов и успешное применение ее для объяснения многих свойств растворов обеспечили быстрый успех этой теории .

Химическая теория растворов. Д.И. Менделеев и его последователи рассматривали процесс образования раствора как разновидность химического процесса, для которого характерно взаимодействие между частицами компонентов. Д.И. Менделеев рассматривал растворы как системы,образованные частицами растворителя,растворенного вещества и неустойчивых химических соединений,которые образуются между ними и находятся в состояние частичной диссоциации. Д.И. Менделеев отмечал, что процессы,протекающие в растворе,имеют динамический характер и на необходимость использования всей суммы физических и химических сведений о свойствах частиц, образующих раствор,подчеркивал, что все компоненты раствора равноправны и без учета свойств и состояний каждого из них нельзя дать полной характеристики системы в целом. Большое значение ученый придавал изучению свойств растворов как функции температуры,давления,концентрации; он впервые высказал мысль о необходимости изучения свойств растворов в смешанных растворителях. Развивая учение Д.И. Менделеева, сторонники химического взгляда на природу растворов указали, что частицы растворенного вещества движутся не в пустоте, а в пространстве, занятом частицами растворителя, с которыми они взаимодействуют, образуя сложные,различные по устойчивости соединения. Развитием теории Д.И.Менделеева является полиэдрическая теория образования растворов, согласно которой в жидкости из однородных и разнородных молекул создаются элементарные пространственные группы-полиэдры. Однако химическая теория не может объяснить механизм образования идеальных растворов, отклонения в свойствах реальных растворов от свойств идеальных растворов.

Развитие химической теории растворов шло в нескольких направлениях объединенных единой идеей о взаимодействии растворителя с растворенным веществом. Эти исследования касались нахождения определенных соединений в растворе на основе изучения диаграмм свойство- состав, изучения давления пара над растворами, распределения веществ между двумя растворителями, изучения термохимии растворов. Работы по определению соединений в растворах были связаны с большими трудностями, так как прямым опытом было невозможно доказать существование сложных соединений (гидратов) в водных растворах, поскольку они находятся в состояние диссоциации, и попытки выделить их из растворов в неразложенном виде заканчивались неудачей. Большое значение для подтверждения химической теории растворов имели термодинамические исследования. На многих системах было показано, что при образовании раствора наблюдается охлаждение или нагревание системы,что объясняли химическими взаимодействием между компонентами. Химическую природу процесса растворения подтверждали и исследования давления пара над раствором, и изучение распределения веществ между двумя растворителями.

К началу 20 в. накопился обширный экспериментальный материал, показывающий, что растворы являются сложными системами, в которых наблюдается явление ассоциации, диссоциации, комплексообразования, и при их изучении необходимо учитывать все виды взаимодействия между частицами, имеющимися и образующимися в растворе.

В связи с большим разнообразием растворов для объяснения их природы и свойств используются представления и физической и химической теории растворов .

Адсорбция в химии

Концепции современного естествознания (химическая составляющая)

Основные законы химии и стехиометрические расчеты

Количественное (по массе или объему) изучение многих реакций и объяснение результатов эксперимента приводит к стехиометрическим законам. Основной физической величиной в химии является количество вещества. С 1 января 1963 г...

Основные физико-химические закономерности получения пленок из растворов полимеров

Полимеры в растворах, особенно концентрированных, образуют структуры, форма и размер которых зависят как от характера взаимодействия полимера с растворителем, так и от условий, в которых находится раствор (температура...

Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060

Проводимые на кафедре "Химическая технология лаков, красок и лакокрасочных покрытий" исследования, цель которых поиск новых эффективных малотоксичных противокоррозионных пигментов...

Получение биогаза

Достаточно высокое содержание метана в биогазе, а следовательно, и высокая теплота сгорания, предоставляют широкие возможности применения биогаза...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

В химической отрасли водород главным образом используется для синтеза метанола и аммиака. Остальная доля водорода приходящаяся на эту отрасль, используется в прочих химических производствах: например...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

Наиболее крупнотоннажными процессам использования монооксида углерода является гидроформирование олефинов, карбонилирование метанола с получением уксусной кислоты, синтез непредельных и разветвленных карбоновых кислот...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

Диметиловый эфир в настоящее время используется главным образом как безвредный для окружающей среды наполнитель аэрозольных баллончиков...

Роль Менеделеева в развитии мировой науки

Д.И. Менделеев писал, что есть четыре предмета, составивших его имя: три научных открытия (периодический закон, химическая теория растворов и изучение упругости газов), а также «Основы химии» - учебник-монография, равного которому, пожалуй...

Теории и термодинамика образования растворов полимеров

При рассмотрении теорий не будет делаться акцент на математических выкладках, а лишь остановлюсь на основных моментах: основные допущения и параметры, вид ключевых уравнений, достоинства и недостатки теорий. Из всего массива...

Физико-химические основы хроматографического процесса

В задачу теории хроматографии входит установление законов движения и размытия хроматографических зон. Основными факторами, положенными в основу классификации теорий хроматографии...

Характеристика процесса адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции...

Химия комплексных соединений элементов подгруппы хрома

Подобно тому как развитие химии было задержано флогистонной теорией, а развитие органической химии - представлениями о «жизненной силе»...

Выше показано, что реакция чистой воды является нейтраль­ной (рН = 7). Водные растворы кислот и оснований имеют, соответственно, кислую (рН < 7) и щелочную (рН > 7) реакцию. Практика, однако, показывает, что не только кислоты и основания, но и соли могут иметь щелочную или кислую реакцию - причиной этого является гидролиз солей. Взаимодействие солей с водой, в результате которого образуются кислота (или кислая соль), и основание (или основная соль), называется гидролизом солей. Рассмотрим гидролиз солей следующих основных типов: 1. Соли сильного основания и сильной кислоты (например, KBr, NаNО3) при растворении в воде не гидролизуются, и рас­твор соли имеет нейтральную реакцию….

Хорошо известно, что одни вещества в растворенном или расплав­ленном состоянии проводят электрический ток, другие в тех же усло­виях ток не проводят. Это можно наблюдать с помощью простого прибора. Он состоит из угольных стержней (электродов), присоединенных проводами к электриче­ской сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор саха­ра, то лампочка не загорается. Но она ярко загорится, если их опустить в раст­вор хлорида натрия. Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений,…

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям: 1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т.д.) — или из нескольких атомов — это сложные ионы (NО3—, SO2-4, РОЗ-4и т.д.). 2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные — к аноду. Поэтому первые называются катионами, вторые — анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами. 3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например,…

Существенным является вопрос о механизме электролити­ческой диссоциации. Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При…

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей. Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода Н3РО4 Н+ + Н2РО—4(первая ступень) Н2РО—4 Н+ + НРO2-4 (вторая ступень) НРО2-4 Н+ PОЗ—4 (третья ступень) Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей. Поэтому в водном растворе, например, фос­форной кислоты наряду с молекулами Н3РО4 имеются ионы (в последовательно уменьшающихся количествах) Н2РО2-4, НРО2-4 и РО3-4. Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например: KOH K+ + OH—;…

Поскольку электролитическая диссоциация — процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой альфа α). Степень диссоциации — это отношение числа распавшихся на ионы моле­кул N’ к общему числу растворенных молекул N: Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы. Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита,…

Согласно теории электролитической диссоциации все реакции в водных растворах электролитов являются реакциями между ионами. Они называются ионными реакциями, а уравнения этих реакций — ионными уравнениями. Они проще уравнений реакций, записанных в молекулярной форме, и имеют более общий характер. При составлении ионных уравнений реакций следует руководство­ваться тем, что вещества малодиссоциированные, малорастворимые (выпадающие в осадок) и газообразные записываются в молекулярной форме. Знак ↓, стоящий при формуле вещества, обозначает, что это вещество уходит из сферы реакции в виде осадка, знак обозначает, что вещество удаляется из сферы реакции в виде газа. Сильные электролиты, как полностью диссоциированные, записывают в виде ионов. Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части. Для закрепления этих положений рассмотрим два примера. Пример 1. Напишите уравнения реакций между растворами хлорида железа (III) и гидроксида натрия в молекулярной и ионной формах. Разобьем решение задачи на четыре этапа. 1….

КH2O = 1.10-4 Данная константа для воды называется ионным произведением воды, которое зависит только от температуры. При диссоциации воды на каждый ион Н+ образуется один ион ОН—, следовательно, в чистой воде концентрации этих ионов одинаковы: [Н+] = [ОН—]. Используя значение ионного произведения воды, находим: = [ОН—] = моль/л. Таковы концентрации ионов Н+ и ОН—…

Раствор - это гомогенная система, содержащая не менее двух веществ. Существуют растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке, - растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразный раствор - это прежде всего воздух, а также другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жидкостей и твердых тел с жидкостями.

Твердые растворы представлены сплавами, а также стеклами.

На практике большое значение имеют жидкие растворы (смеси жидкостей, где растворитель - жидкость). Из неорганических веществ самый распространенный растворитель - вода. Из органических веществ в качестве растворителей применяют метанол, этанол, диэтило- вый эфир, ацетон, бензол, четыреххлористый углерод и другие.

Под действием хаотически движущихся частиц растворителя частицы (ионы или молекулы) растворяемого вещества переходят в раствор, образуя благодаря беспорядочному движению частиц качественно новую однородную (гомогенную ) систему. Растворимость в разных растворителях - характеристическое свойство вещества. Одни вещества могут смешиваться друг с другом в любых соотношениях (вода и спирт), другие имеют ограниченную растворимость (хлорид натрия и вода).

Рассмотрим растворение твердого вещества в жидкости. В рамках молекулярно-кинетической теории при внесении твердой поваренной соли в растворитель (например, в воду) ионы Na + и С1“, находящиеся на поверхности, взаимодействуя с растворителем (с молекулами и другими частицами растворителя), могут отрываться и переходить в раствор. После удаления поверхностного слоя процесс распространяется на следующие слои твердого вещества. Так постепенно частицы переходят из кристалла в раствор. Разрушение ионных кристаллов NaCl в воде, состоящей из полярных молекул, показано на рисунке 6.1.

Рис. 6.1. Разрушение кристаллической решетки NaCl в воде. а - атака молекул растворителя; б - ионы в растворе

Частицы, перешедшие в раствор, распределяются благодаря диффузии по всему объему растворителя. В то же время по мере увеличения концентрации частицы (ионы, молекулы), находящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося твердого вещества могут задерживаться на ней, т. е. растворение всегда сопровождается обратным процессом - кристаллизацией. Может наступить такой момент, когда одновременно из раствора выделяется столько же частиц (ионов, молекул), сколько их переходит в раствор, т. е. наступает равновесие.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно дополнительно растворить некоторое количество данного вещества, - ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Концентрация вещества в насыщенном растворе - величина постоянная при данных условиях (температура, растворитель), она характеризует растворимость вещества ; подробнее см. § 6.4.

Раствор, в котором содержание растворенного вещества больше, чем в насыщенном растворе при данных условиях, называют пересыщенным. Это неустойчивые, неравновесные системы, которые самопроизвольно переходят в равновесное состояние, и при выделении в твердом виде избытка растворенного вещества раствор становится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с высоким содержанием растворенного вещества. Необходимо подчеркнуть, что понятия разбавленный и концентрированный растворы относительные и основаны на качественной оценке соотношения количеств растворенного вещества и растворителя в растворе (иногда раствор называют крепким и слабым в том же смысле). Можно сказать, что эти определения возникли из практической необходимости. Так, говорят, что раствор серной кислоты H 2 S0 4 концентрированный (крепкий) или разбавленный (слабый), но, при какой концентрации раствор серной кислоты нужно считать концентрированным, а при какой разбавленным, точно не определено.

При сравнении растворимости различных веществ видно, что в случае малорастворимых веществ насыщенные растворы разбавленные, в случае хорошо растворимых веществ их ненасыщенные растворы могут быть довольно концентрированными.

Например, при 20 °С в 100 г воды растворяется 0,00013 г карбоната кальция СаС0 3 . Раствор СаС0 3 при этих условиях насыщенный, но весьма разбавленный (его концентрация очень мала). Но вот пример. Раствор 30 г поваренной соли в 100 г воды при 20 °С ненасыщенный, но концентрированный (растворимость NaCl при 20 °С 35,8 г в 100 г воды).

В заключение отметим, что здесь и далее (кроме § 6.8) речь пойдет об истинных растворах. Частицы, из которых состоят такие растворы, настолько малы, что их нельзя увидеть; это атомы, молекулы или ионы, их диаметр обычно не превышает 5 нм (5 10~ 9 м).

И последнее о классификации растворов. В зависимости от того, электронейтральные или заряженные частицы присутствуют в растворе, растворы могут быть молекулярными (это растворы неэлектролитов) и ионными {растворы электролитов). Характерное свойство растворов электролитов - электропроводность (они проводят электрический ток).

Тема 7. Растворы. Дисперсные системы

Лекции 15-17 (6 ч)

Цель лекций: изучить основные положения сольватной (гидратная) теории растворения; общие свойства растворов (законы Рауля, Вант-Гоффа, осмотическое давление, уравнение Аррениуса); типы жидких растворов, дать определение растворимости; рассмотреть свойства слабых электролитов (константу растворимости, закон разбавление Оствальда, ионное произведение воды, рН среды, произведение растворимости); свойства сильных электролитов (теорию Дебая-Хюккеля, ионную силу раствора); дать классификацию дисперсных систем; рассмотреть устойчивость коллоидных растворов, коагуляцию, пептизацию, получение коллоидно-дисперсных систем и свойства коллоидно-дисперсных систем (молекулярно-кинетические, оптические и электро-кинетические).

Изучаемые вопросы:

7.1. Сольватная (гидратная) теория растворения.

7.2. Общие свойства растворов.

7.3. Типы жидких растворов. Растворимость.

7.4. Свойства слабых электролитов.

7.5. Свойства сильных электролитов.

7.6. Классификация дисперсных систем.

7.7. Получение коллоидно-дисперсных систем.

7.8. Устойчивость коллоидных растворов. Коагуляция. Пептизация.

7.9. Свойства коллоидно-дисперсных систем.

Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых растворимостью. Всякий раствор состоит из нескольких компонентов: растворителя (А ) и растворенного вещества одного или нескольких (В ).

Компонент – это однородная по химическим свойствам часть термодинамической системы, которая может быть выделена из нее и существовать в свободном виде сколь угодно долго.

Растворитель – это компонент, концентрация которого выше концентрации других компонентов в растворе. Он сохраняет свое фазовое состояние при образовании растворов.

Любой раствор характеризуется такими свойствами, как плотность, температура кипения, температура замерзания, вязкость, поверхностное натяжение, давление растворителя над раствором, осмотическое давление и т. д. Эти свойства изменяются плавно при изменении давления, температуры, состава (концентрации). Концентрация раствора указывает количество вещества, которое содержится в определенном весовом количестве раствора или растворителя или в определенном объеме раствора. В химии применяются разнообразные способы выражения концентрации растворов:

Массовая доля растворенного вещества (процентная концентрация (w)) показывает число г растворенного вещества (m в ) в 100 г раствора (m р ), выражается в %:

Молярная концентрация (С) показывает число моль растворенного вещества (n) в 1 дм³ раствора (V):


Выражается в моль/дм³, например, С(1/1Н 2 SO 4) = 0,1 моль/дм³.

Молярная концентрация эквивалента – это число молей-эквивалентов растворенного вещества в 1 дм³ раствора (V):

Выражается в моль/дм³. Например, С(1/2Н 2 SO 4) = 0,1 моль/дм³; С(1/5 KМnO 4) = 0,02 моль/дм³.

Понятия эквивалент, фактор эквивалентности (например, f экв (HCl) = 1/1; f экв (Н 2 SO 4) = 1/2; f экв (Na 2 CO 3) = 1/2; f экв (KMnO 4) = 1/5) и молярная масса эквивалента (например, для карбоната натрия: M(1/2 Na 2 CO 3) = f экв M(Na 2 CO 3) = 1/2 M(Na 2 CO 3)) были рассмотрены во введении (параграф 2).

Моляльность (С m) показывает число моль (n) растворенного вещества в 1000 г растворителя (m р-ля):

Выражается в моль/кг растворителя, например С m (NaCl) = 0,05 моль/кг.

Мольная доля – это отношение числа молей вещества к сумме чисел молей в растворе:

где N А и N В – мольная доля растворителя и растворенного вещества, соответственно. Мольная доля, умноженная на 100 %, образует мольный процент, поэтому

N А + N В = 1. (7.6)

В практической работе важно уметь быстро переходить от одних единиц концентрации к другим, поэтому важно помнить, что

m р-ра = V р-ра ρ, (7.7)

где m р-ра – масса раствора, г; V р-ра – объем раствора, см 3 ; ρ – плотность раствора, г/ см 3 .

Процесс растворения является сложным физико-химическим процессом, в котором наиболее ярко проявляется взаимодействие между частицами (молекулами или ионами) различной химической природы.

На процессы растворения многих веществ, находящихся в различных агрегатных состояниях, большое влияние оказывает полярность молекул растворителя и растворенного вещества. Необходимо отметить, что подобное растворяется в подобном. В полярных растворителях (вода, глицерин) растворяются полярные молекулы (KCl, NH 4 Cl и т.д.); в неполярных растворителях (толуоле, бензине, и т.д.) растворяются неполярные молекулы (углеводороды, жиры и т.д.).

Современная теория растворения основана на физической теории Вант-Гоффа и С. Аррениуса и химической теории Д. И. Менделеева. Согласно этой теории процесс растворения состоит из трех стадий:

1) механическое разрушение связей между частицами растворенного вещества, например, разрушение кристаллической решетки соли (это физическое явление);

2) образование сольватов (гидратов) , т. е. нестойких соединений частиц растворенного вещества с молекулами растворителя (это химическое явление);

3) самопроизвольный процесс диффузии сольватированных (гидратированных) ионов по всему объему растворителя (это физический процесс). В растворе всякая заряженная частица (ион или полярная молекула) окружается сольватной оболочкой , которая состоит из ориентированных соответствующим образом молекул растворителя. Если растворителем является вода, то употребляется термин гидратная оболочка , а само явление носит название гидратация .

Процесс образования растворов сопровождается тепловым эффектом, который может быть как эндотермическим, так и экзотермическим. Первая стадия растворения всегда проходит с поглощением тепла, а вторая может проходить как с поглощением, так и с выделением тепла. Следовательно суммарный тепловой эффект растворения зависит от теплового эффекта образования сольватов (гидратов). Соединения молекул или ионов растворяемого вещества с молекулами растворителя осуществляется, главным образом, за счет водородной связи, или же вследствие электростатического взаимодействия полярных молекул веществ. Состав сольватов (гидратов) меняется в зависимости от температуры и концентрации растворяемого вещества. С их повышением число молекул растворителя входящего в сольват (гидрат) уменьшается. Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Теория растворов еще не позволяет в любом случае предсказывать свойства растворов по свойствам их компонентов. Объясняется это чрезвычайно большим разнообразием и сложностью взаимодействий между молекулами растворителя и частицами растворенного вещества. Структура растворов, как правило, бывает значительно сложнее строения его отдельно взятых компонентов.

По агрегатному состоянию все растворы делятся на три группы: растворы газов в газах или газовые смеси; жидкие растворы; твердые растворы (сплавы металлов). В дальнейшем будут рассматриваться только жидкие растворы.