Функции и разновидности датчиков и сенсоров. Бесконтактные датчики: обзор, принцип действия, назначение. Сенсорный выключатель Каково назначение датчиков

Датчик — это миниатюрное, сложное устройство, которое преобразует физические параметры в сигнал. Подает он сигнал в удобной форме. Основной характеристикой датчика является его чувствительность. Датчики положения осуществляют связь между механической и электронной частью оборудования. Пользуются им для автоматизации процессов. Используются эти устройства во многих отраслях производства.

Датчики положения могут быть разными по форме. Изготавливают их для определенных целей. С помощью прибора можно определить месторасположение объекта. Причем физическое состояние не имеет значение. Объект может иметь твердое тело, быть в жидком состоянии, либо даже сыпучим.

При помощи прибора можно решить разные задачи:

  • Измеряют положение и перемещение (угловое и линейное) органов в рабочих машинах, механизмах. Измерение может совмещаться с передачей данных.
  • В АСУ, робототехнике может быть звеном обратной связи.
  • Контроль степени открытия/закрытия элементов.
  • Регулировка направляющих шкивов.
  • Электропривод.
  • Определение данных расстояния до предметов без привязки к ним.
  • Проверку функций механизмов в лабораториях, то есть провести испытания.

Классификация, устройство и принцип действия

Датчики положения бывают бесконтактные и контактные.

  • Бесконтактные, это приборы являются индуктивными, магнитными, емкостными, ультразвуковыми и оптическими. Они при помощи магнитного, электромагнитного или электростатического поля образуют связь с объектом.
  • Контактные. Самым распространенным из этой категории, является энкодер.

Бесконтактный

Бесконтактные датчики положения или сенсорный выключатель, срабатывают без контакта с подвижным объектом. Они способны быстро реагировать и часто включаться.

По прицепу действия бесконтактные бывают:

  • емкостными,
  • индуктивными,
  • оптическими,
  • лазерные,
  • ультразвуковые,
  • микроволновые,
  • магниточувствительные.

Бесконтактные могут применяться для перехода на частоту вращения ниже, или остановки.

Индуктивные

Индуктивный датчик бесконтактный работает за счет изменений в электромагнитном поле.

Основные узлы индуктивного датчика изготовлены из латуни либо полиамида. Узлы связанны между собой. Конструкция надежна, способна выдерживать большие нагрузки.

  • Генератор создает электромагнитное поле.
  • Триггер Шмидта перерабатывает информацию, и передает другим узлам.
  • Усилитель способен передавать сигнал на большие расстояния.
  • Светодиодный индикатор помогает контролировать его работу и отслеживать изменение настроек.
  • Компаунд — фильтр.

Работа индуктивного прибора начинается с момента включения генератора, создается электромагнитное поле. Поле влияет на вихревые токи, которые меняют амплитуду колебаний генератора. Но генератор первый реагирует на изменения. Когда в поле попадает двигающийся металлический предмет, сигнал подается на блок управления.

После поступления сигнала, происходит его обработка. Величина сигнала зависит от объема предмета, и от расстояния, разделяющего предмет и прибор. Затем происходит преобразование сигнала.

Емкостные

Емкостной датчик внешне может иметь обычный плоский или цилиндрический корпус, внутри которого штыревые электроды, и диэлектрическая прокладка. Одна из пластин стабильно отслеживает перемещение предмета в пространстве, в результате изменяется емкость. С помощью этих приборов измеряют угловое и линейное перемещение предметов, их размеры.

Емкостные изделия простоты, обладают высокой чувствительностью и малой инерционностью. Внешнее влияние электрических полей влияет на чувствительность прибора.

Оптические

  • Измерять положение, перемещение предметов, после концевых выключателей.
  • Выполнять бесконтактное измерение.
  • Выявить положение предметов двигающихся на большой скорости.

Барьерный

Барьерный оптический датчик обозначают латинской буквой «Т». Этот оптический прибор двухблочный. Используется для обнаружения предметов попавших в зону обзора между передатчиком и приемником. Зона действия до 100м.

Рефлекторный

Буквой «R» обозначается рефлекторный оптический датчик. Изделие рефлекторное вмещает в одном корпусе передатчик и приемник. Рефлектор служит отражением луча. Чтобы обнаружить предмет с зеркальной поверхностью в датчике устанавливают поляризационный фильтр. Дальность действия до 8м.

Диффузионный

Датчик диффузионный обозначается буквой «D». Корпус прибора моноблочный. Этим приборам не требуется точная фокусировка. Конструкция рассчитана на работу с предметами, находящиеся на близком расстоянии. Дальность действия 2 м.

Лазерные

Лазерные датчики обладают высокой точностью. Они могут определить место, где происходит движение и дать точные размеры объекта. Приборы эти небольших габаритов. Потреблении энергии приборами минимальное. Изделие моментально способно выявить чужого и сразу включить сигнализацию.

Основа работы лазерного прибора — измерить расстояние до предмета с помощью треугольника. Излучается лазерный луч из приемника с высокой параллельностью, попадая на поверхность предмета, отражается. Отражение происходит под определенным углом. Величина угла зависит от расстояния, на котором находится предмет. Отраженный луч возвращается в приемник. Считывает информацию интегрированный микроконтроллер – он определяет параметры объекта и его расположение.

Ультразвуковые

Ультразвуковые датчики – это сенсорные приборы, которые используются для преобразования электрического тока в волны ультразвука. Их работа основана на взаимодействии колебаний ультразвука с контролируемым пространством.

Работают приборы по принципу радара — улавливают объект по отраженному сигналу. Звуковая скорость постоянная величина. Прибор способен вычислить расстояние до объекта в соответствии с диапазоном времени, когда вышел сигнал и вернулся.

Микроволновые

Микроволновые датчики движения излучают высокочастотные электромагнитные волны. Изделие чувствительно к изменению отражаемых волн, которые создаются объектами в контролируемой зоне. Объект же может быть теплокровным, живым, или просто предметом. Важно чтобы объект отражал радиоволны.

Используемый принцип радиолокации, позволяет обнаружить объект и вычислить скорость его перемещения. При движении срабатывает прибор. Это эффект Допплера.

Магниточувствительные

Этот вид приборов изготавливают двух видов:

  • на основе механических контактов;
  • на основе эффекта Холла.

Первый может работать при переменном и постоянном токе до 300V или при напряжении близком к 0.

Изделие на основе эффекта Холла чувствительным элементом отслеживает изменение характеристик при действии внешнего магнитного поля.

Контактный

Контактные датчики - это изделия параметрического типа. Если наблюдаются трансформации механической величины, у них изменяется электрическое сопротивление. В конструкции изделия два электрода, которые обеспечивают контакт входа приемника с грунтом. Емкостной преобразователь состоит из двух металлических пластин, держат они два оператора, установленных на удалении друг от друга. Одной пластиной может быть корпус приемника.

Контактный угловой датчик называют энкодер, используется для определения угла поворота вращающегося предмета. Нейтральный отвечает за режимом работы двигателя.

Ртутный

Ртутные датчики положения имеют стеклянный корпус и по размерам схожи с неоновой лампой. Имеется два вывода-контакта с капелькой ртутного шарика внутри стеклянной вакуумной, запаянной колбы.

Используется автомобилистами для контроля угла наклона подвески, открытия капота, багажника. Используют его и радиолюбители.

Сферы применения

Области использования миниатюрных устройств обширны:

  • Используют в машиностроении для сборки, тестирования, упаковки, сварки, заклепки.
  • В лабораториях применяют для контроля, измерения.
  • Автомобильной технике, в транспортной промышленности, подвижной технике. Наиболее популярен датчик нейтральной передачи для МКПП. Во многих системах управления автомобилей присутствуют датчики. Они есть в механизме рулевого управления, клапана, педали, в подкапотных системах, в системах управления зеркалами, креслами, откидными крышами.
  • Применяют их в конструкциях роботов, в научной сфере и сфере образования.
  • Медицинской технике.
  • Сельском хозяйстве и спецтехнике.
  • Деревообрабатывающей промышленности.
  • Металлообрабатывающей области, в станках металлорежущих.
  • Проволочном производстве.
  • Конструкциях прокатных станов, в станках с программным управлением.
  • Системы слежения.
  • В охранных системах.
  • Гидравлических и пневматических системах.

В системах автоматики датчик предназначен для преобразования контролируемой или регулируемой величины (параметра регулируемого объекта) в выходной сигнал, более удобный для дальнейшего движения информации. Поэтому датчик нередко называют преобразователем, хотя этот термин является слишком общим, так как любой элемент автоматики и телемеханики, имея вход и выход, является в той или иной мере преобразователем.

В простейшем случае датчик осуществляет только одно преобразование Y=f(X), как, например, силы в перемещении (в пружине), или температуры в электродвижущую силу (в термоэлементе) и т.п. Такой вид датчиков называют датчики с непосредственным преобразованием. Однако в ряде случаев не удается непосредственно оказать воздействие входной величины Х на необходимую входную величину U (если такая связь неудобна или она не дает желаемых качеств). В этом случае осуществляют последовательные преобразования: входной величиной Х воздействуют на промежуточную Z, а величиной Z - на необходимую величину Y:

Z=f1(Х); Y=f2(Z)

В результате получается функция, связывающая Х с Y:

Y=f2=F(Х).

Число таких последовательных преобразований может быть и больше двух, и в общем случае функциональная связь Y с Х может проходить через ряд промежуточных величин:

Y=fn{...}=F(Х).

Датчики, имеющие такие зависимости, называются датчиками с последовательным преобразованием. Все остальные части называются промежуточными органами . В датчике с двумя преобразованиями промежуточные органы отсутствуют, в нем имеются только воспринимающий и исполнительный органы. Нередко один и тот же конструктивный элемент выполняет функции нескольких органов. Например, упругая мембрана выполняет функцию воспринимающего органа (преобразование давления в силу) и функцию исполнительного органа (преобразование силы в перемещение).

Классификация датчиков.

Исключительное многообразие датчиков, применяемое в современной автоматике, вызывает необходимость их классификации. В настоящее время известны следующие типы датчиков, которые наиболее целесообразно классифицировать по входной величине, практически соответствующей принципу действия:

Наименование датчика

Входная величина

Механический

Перемещение твердого тела

Электрический

Электрическая величина

Гидравлический

Перемещение жидкости

Пневматический

Перемещение газа

Термический

Оптический

Световая величина

Акустический

Звуковая величина

Радиоволновой

Радиоволны

Ядерные излучения

Здесь рассматриваются наиболее распространенные датчики, у которых хотя бы одна из величин (входная или выходная) – электрическая.

Датчики различают также по диапазону изменения входного сигнала. Например, одни электрические датчики температуры предназначены для измерения температуры от 0 до 100°С, а другие – от 0 до 1600°С. Очень важно, чтобы диапазон изменения выходного сигнала был при этом одинаков (унифицирован) для разных приборов. Унификация выходных сигналов датчиков позволяет использовать общие усилительные и исполнительные элементы для самых разных систем автоматики.

Электрические датчики относятся к наиболее важным элементам систем автоматики. С помощью датчиков контролируемая или регулируемая величина преобразуется в сигнал, в зависимости от изменения которого и протекает весь процесс регулирования. Наибольшее распространение в автоматике получили датчики с электрическим выходным сигналом. Объясняется это, прежде всего удобством передачи электрического сигнала на расстояние, его обработки и возможностью преобразования электрической энергии в механическую работу. Кроме электрических распространение получили механические, гидравлические и пневматические датчики.

Электрические датчики в зависимости от принципа производимого ими преобразования делятся на два типа – модуляторы и генераторы.

У модуляторов (параметрических датчиков) энергия входа воздействует на вспомогательную электрическую цепь, изменяя ее параметры и модулируя значение и характер тока или напряжения от постороннего источника энергии. Благодаря этому одновременно усиливается сигнал, поступивший на вход датчика. Наличие постороннего источника энергии является обязательным условием работы датчиков – модуляторов.

Рис. 1. Функциональные блоки датчика – модулятора (а) и датчика – генератора (б).

Модуляция осуществляется с помощью изменения одного из трех параметров – омического сопротивления, индуктивности, емкости. В соответствии с этим различают группы омических, индуктивных и емкостных датчиков.

Каждая из этих групп может делиться на подгруппы. Так, наиболее обширная группа омических датчиков может быть разделена на подгруппы: тензорезисторы, потенциометры, терморезисторы, фоторезисторы. Ко второй подгруппе относятся варианты индуктивных датчиков, магнитоупругие и трансформаторные. Третья подгруппа объединяет различного типа емкостные датчики.

Второй тип – датчики-генераторы являются просто преобразователями. Они основаны на возникновении электродвижущей силы под влиянием различных процессов, связанных с контролируемой величиной. Возникновение такой электродвижущей силы может происходить, например, вследствие электромагнитной индукции, термоэлектричества, пьезоэлектричества, фотоэлектричества и других явлений, вызывающих разделение электрических зарядов. Соответственно этим явлениям генераторные датчики подразделяются на индукционные, термоэлектрические, пьезоэлектрические и фотоэлектрические.

Возможны еще группы электротехнических, электростатических датчиков, датчиков Холла и др.

Потенциометрические и тензометрические датчики.

Потенциометрические датчики применяются для преобразования угловых или линейных Перемещений в электрический сигнал. Потенциометрический датчик представляет собой переменный резистор, который может включаться по схеме реостата или по схеме потенциометра (делителя напряжения).

Конструктивно потенциометрический датчик представляет собой электромеханическое устройство (рис. 2-1), состоящее из каркаса 1 с намотанным на него тонким проводом (обмотка) из сплавов с высоким удельным сопротивлением, скользящего контакта - щетки 2 и токопровода 3, выполненного в виде или скользящего контакта, или спиральной пружинки.

Каркас с намотанным проводом закрепляется неподвижно, а щетка соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовать в электрический сигнал. При перемещении щетки изменяется активное сопротивление Rх участка провода между щеткой и одним из выводов обмотки датчика.

В зависимости от схемы включения датчика перемещение может быть преобразовано в изменение активного сопротивления или тока (при последовательной схеме включения) или в изменение напряжения (при Включении по схеме делителя напряжения). На точность преобразования при последовательном включении значительное влияние оказывает изменение сопротивления соединительных проводов, переходного сопротивления между щеткой и обмоткой датчика.

В устройствах автоматики чаще применяется включение потенциометрических датчиков по схеме делителя напряжения. При одностороннем перемещении подвижной части ОУ применяют однотактную схему включения, дающую нереверсивную статическую характеристику. При двустороннем перемещении применяют двухтактную схему включения, дающую реверсивную характеристику (рис. 2-2).

В зависимости от конструкции и функционального закона, связывающего выходной сигнал датчика с перемещением щетки, различают потенциометрические датчики нескольких типов.



Линейные потенциометрические датчики.

Они имеют одинаковое сечение каркаса по всей длине. Диаметр провода и шаг намотки у них постоянны. В режиме холостого хода (при нагрузке Rn→∞ и I→0) выходное напряжение линейного потенциометрического датчика Uвых пропорционально перемещению щётки х: Uвых = (U0/L)х, где U0 - напряжение питания датчика; l-длина намотки. Напряжение питания датчика U0 и длина намотки L являются постоянными величинами, поэтому в окончательном виде: Uвых = kx, где k=U0/L- коэффициент передачи.



Функциональные потенциометрические датчики.

Они имеют функциональную нелинейную зависимость между перемещением щетки и выходным напряжением: Uвых= f(х). Часто применяются функциональные потенциометры, имеющие тригонометрическую, степенную или логарифмическую характеристику. Применяют функциональные потенциометры в аналоговых автоматических вычислительных устройствах, в поплавковых измерителях уровня жидкости для баков сложной геометрической формы и т. д. Получить требующуюся функциональную зависимость у потенциометрических датчиков можно различными методами: изменением высоты каркаса потенциометра (плавно или ступенчато), шунтированием участков обмотки потенциометра резисторами.

Многооборотные потенциометрические датчики.

Они являются конструктивной разновидностью линейных потенциометрических датчиков с угловым перемещением щетки. У многооборотных датчиков щетка должна повернуться на угол 360° несколько раз, чтобы переместиться на всю длину намотки L. Достоинствами многооборотных датчиков являются высокая точность, малый порог чувствительности, небольшие габариты, недостатками - относительно большой момент трения, сложность конструкции, наличие нескольких скользящих контактов

и трудность использования в быстродействующих системах.

Металлопленочные потенциометрические датчики.

Это новая перспективная конструкция потенциометрических датчиков. Каркас у них представляет собой

стеклянную или керамическую пластину, на которую наносится тонкий слой (несколько микрометров) металла с высоким удельным сопротивлением. Съем сигнала у металлопленочных потенциометрических датчиков осуществляется металлокерамическими щетками. Изменение ширины металлической пленки или ее толщины позволяет получить линейную или нелинейную характеристику потенциометрического датчика, не изменяя его конструкции. Используя обработку электронным или лазерным лучом, можно осуществлять автоматическую подгонку сопротивления датчика и его характеристики к заданным значениям. Габариты металлопленочных потенциометрических датчиков существенно меньше, чем проволочных, а порог чувствительности практически равен нулю ввиду отсутствия витков обмотки.

Оценивая потенциометрические датчики, следует отметить наличие у них как существенных достоинств, так и крупных недостатков. Их достоинствами являются: простота конструкции; высокий уровень выходного сигнала (напряжение - до нескольких десятков вольт, ток - до нескольких десятков миллиампер); возможность работы как на постоянном, так и на переменном токе. Их недостатка ми являются: недостаточно высокая надежность и ограниченная долговечность из-за наличия скользящего контакта н истирания обмотки; влияние на характеристику сопротивления нагрузки; потери энергии за счет рассеяния мощности активным сопротивлением обмотки; сравнительно большой момент, необходимый для вращения подвижной части датчика со щеткой.


Электронные датчики (измерители) – важная составляющая в автоматизации любых технологических процессов и в управлении различными машинами и механизмами.

С помощью электронных устройств можно получить полную информацию о параметрах контролируемого оборудования.

Принцип работы любого электронного датчика построен на преобразовании контролируемых показателей в сигнал, который передается для дальнейшей обработки управляющим устройством. Возможно измерение любых величин – температуры, давления, электрического напряжения и силы тока, силы света и других показателей.

Популярность электронных измерителей обуславливается рядом конструкционных особенностей, в частности возможно:

  • передать измеряемые параметры на практически любое расстояние;
  • преобразовать показатели в цифровой код для достижения высокой чувствительности и быстродействия;
  • осуществлять передачу данных с максимально высокой скоростью.

По принципу действия электронные датчики разделяют на несколько категорий в зависимости от принципа действия. Одними из самых востребованных считаются:

  • емкостные;
  • индуктивные;
  • оптические.

Каждый из вариантов обладает определенными преимуществами, которые определяют оптимальную сферу его применения. Принцип работы любого типа измерителя может различаться в зависимости от конструкции и используемого контролирующего оборудования.

ЕМКОСТНЫЕ ДАТЧИКИ

Принцип работы электронного емкостного датчика построен на изменении емкости плоского или цилиндрического конденсатора в зависимости от перемещения одной из обкладок. Также учитывается такой показатель как диэлектрическая проницаемость среды между обкладок. Одно из преимуществ подобных устройств – очень простая конструкция, которая позволяет достичь хороших показателей прочности и надежности.

Также измерители этого типа не подвержены искажениям показателей при перепадах температуры. Единственно условие для точных показателей – защита от пыли, влажности и коррозии.

Емкостные датчики широко используются в самых разнообразных отраслях. Простые в изготовлении приборы отличаются низкой себестоимостью производства, при этом обладают длительным сроком эксплуатации и высокой чувствительностью.

В зависимости от исполнения устройства делятся на одноемкостные и духъемкостные. Второй вариант более сложен в изготовлении, но отличается повышенной точностью измерений.

Область применения.

Наиболее часто емкостные датчики используют для измерения линейных и угловых перемещений, причем конструкция устройства может различаться в зависимости от метода измерения (меняется площадь электродов, либо зазор между ними). Для измерения угловых перемещений используют датчики с переменной площадью обкладок конденсатора.

Также емкостные преобразователи используют для измерения давления. Конструкция предусматривает наличие одного электрода с диафрагмой, которая под действием давления изгибается, меняя емкость конденсатора, что фиксируется измерительной схемой.

Таким образом, емкостные измерители могут использоваться в любых системах управления и регулирования. В энергетике, машиностроении, строительстве обычно используют датчики линейных и угловых перемещений. Емкостные преобразователи уровня наиболее эффективны при работе с сыпучими материалами и жидкостями, и часто используются в химической и пищевой промышленности.

Электронные емкостные датчики применяются для точного измерения влажности воздуха, толщины диэлектриков, различных деформаций, линейных и угловых ускорений, гарантируя точность показателей в самых разных условиях.

ИНДУКТИВНЫЕ ДАТЧИКИ

Бесконтактные индуктивные датчики работают по принципу изменения показателя индуктивности катушки с сердечником. Ключевая особенность измерителей данного типа – они реагируют только на изменение местоположения металлических предметов. Металл оказывает непосредственное влияние на электромагнитное поле катушки, что приводит к срабатыванию датчика.

Таким образом, с помощью индуктивного датчика можно эффективно отслеживать положение металлических предметов в пространстве. Это позволяет использовать индуктивные измерители в любой отрасли промышленности, где требуется наблюдение за положением различных конструктивных элементов.

Одна из интересных особенностей датчика – электромагнитное поле изменяется по-разному, в зависимости от вида металла, это несколько расширяет сферу применения устройств.

Индуктивные датчики обладают рядом преимуществ, из которых отдельного внимания заслуживает отсутствие подвижных частей, что существенно повышает надежность и прочность конструкции. Также датчики можно подключать к промышленным источникам напряжения, а принцип работы измерителя гарантирует высокую чувствительность.

Индуктивные датчики изготавливают в нескольких форм-факторах, для максимально удобной установки и эксплуатации, например двойные измерители (две катушки в одном корпусе).

Область применения.

Сфера использования индуктивных измерителей – автоматизация в любой сфере промышленности. Простой пример – устройство можно использовать в качестве альтернативы концевому выключателю, при этом будет увеличена скорость срабатывания. Датчики выполняют в пылевлагозащитном корпусе для эксплуатации в самых сложных условиях.

Устройства можно использовать для измерения самых различных величин – для этого используют преобразователи измеряемого показателя в величину перемещения, которая и фиксируется устройством.

ОПТИЧЕСКИЕ ДАТЧИКИ

Бесконтактные электронные оптические датчики – один из самых востребованных типов измерителей в отраслях промышленности, где требуется эффективное позиционирование любых объектов с максимальной точностью.

Принцип работы данного типа измерителей построен на фиксации изменения светового потока, при прохождении через него объекта. Самая простая схема устройства это излучатель (светодиод) и фотоприемник, преобразующий световое излучение в электрический сигнал.

В современных оптических измерителях используется современная электронная система кодирования, позволяющая исключить влияние посторонних источников света (защита от ложных срабатываний).

Конструктивно, оптические измерители могут выполняться как в отдельных корпусах для излучателя и приемника, так и в одном, в зависимости от принципа работы устройства и области его применения. Корпус дополнительно обеспечивает защиту от пыли и влаги (для работы при низких температурах используют специальные термокожухи).

Оптические датчики классифицируются в зависимости от схемы работы. Самый распространенный тип – барьерный, состоящий из излучателя и приемника, расположенных строго напротив друг друга. Когда постоянный световой поток прерывается объектом, устройство подает соответствующий сигнал.

Второй востребованный тип – диффузный оптический измеритель, в котором излучатель и фотоприемник располагаются в одном корпусе. Принцип действия основан на отражение луча от объекта. Отраженный световой поток улавливается фотоприемником, после чего происходит срабатывание электроники.

Третий вариант – рефлекторный оптический датчик. Как и в диффузном измерителе, излучатель и приемник конструктивно выполнены в одном корпусе, но световой поток отражается от специального рефлектора.

Использование.

Оптические датчики широко применяются в системах автоматизированного управления и служат для обнаружения предметов и их пересчета. Относительно простая конструкция обуславливает надежность и высокую точность измерения. Кодированный световой сигнал обеспечивает защиту от внешних факторов, а электроника позволяет определять не только наличие объектов, но и определять их свойства (габариты, прозрачность и т.д.).

Широкое распространение оптические устройства получили в охранных системах, где используются в качестве эффективных датчиков движения. Вне зависимости от типа, электронные датчики это лучший вариант для современных систем управления и автоматического оборудования.

Высокая точность и скорость измерения обеспечивают надлежащее функционирование оборудования с минимальными отклонениями. При этом большинство электронных измерителей бесконтактные, что в несколько раз повышает надежность устройств и гарантирует длительный срок эксплуатации даже в сложных производственных условиях.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Нередко в электронике находит свое применение такой радиоэлемент, как геркон. Его особенность состоит в способности замыкания контактов при облучении магнитным полем. Что это означает? Взяв простой магнит или разместив недалеко от геркона электромагнит, можно легко производить замыкание и размыкание контактов этого радиоэлемента. По своей сути он и является своеобразным бесконтактным датчиком.

Определение понятия

Что же такое бесконтактный датчик? Под ним понимают такой электронный прибор, который регистрирует присутствие определенного объекта в зоне своего действия и срабатывает без каких-либо механических или любых других воздействий.

Бесконтактные датчики применяются в самых различных сферах. Это создание бытовых приборов и системы охраны объектов, промышленные технологии и автомобилестроение. Кстати, в народе данный элемент называют «бесконтактным выключателем».

Преимущества

Среди основных достоинств бесконтактных датчиков выделяют их:

Компактные размеры;

Высокую степень герметичности;

Долговечность и надежность;

Небольшой вес;

Разнообразие вариантов установки;

Отсутствие контакта с объектом и обратного воздействия.

Классификация

Существуют различные типы бесконтактных датчиков. Они классифицируются по принципу действия и бывают:

Емкостными;

Оптическими;

Индуктивными;

Ультразвуковыми;

Магниточувствительными;

Пирометрическими.

Рассмотрим каждый из этих видов приборов отдельно.

Емкостные датчики

В основе этих приборов находится измерение электроконденсаторов. В их диэлектрике и находится тот объект, который подлежит регистрации. Назначение бесконтактных датчиков такого типа заключается в работе со множеством приложений. Это, например, распознавание жестов. Емкостными выпускают автомобильные датчики дождя. Такие приборы дистанционно измеряют уровень жидкости в процессе обработки различных материалов и т. д.

Емкостной бесконтактный датчик представляет собой аналоговую систему, работающую на расстоянии до семидесяти сантиметров. В отличие от других типов подобных приборов, он обладает большей точностью и чувствительностью. Ведь изменение в нем емкости происходит всего лишь в несколько пикофарад.

Схема бесконтактного датчика данного типа включает в себя пластины, состоящие из проводящей печатной платы, а также зарядку. В этом случае происходит формирование конденсатора. Причем это будет происходить в любое время либо в проводящем заземленном элементе, либо в каком-то объекте, диэлектрическая проницаемость которого отлична от воздуха. Такой прибор сработает и в случае появления в зоне действия устройства человека или части его тела, которая будет аналогична потенциалу земли. По мере приближения, например, пальца, изменится емкость конденсатора. И даже учитывая то, что система является нелинейной, обнаружить возникший в просматриваемых границах посторонний объект для нее не составит никакого труда.

Схема подключения такого бесконтактного датчика может быть усложнена. В устройстве могут быть задействованы сразу несколько независимых друг от друга элементов в направлениях влево/вправо, а также вниз/вверх. Это позволит расширить возможности прибора.

Оптические датчики

Такие бесконтактные выключатели на сегодняшний день находят свое широкое применение во многих отраслях человеческой деятельности, где работает оборудование, необходимое для обнаружения объектов. При подключении бесконтактного датчика используется кодирование. Это позволяет не допустить ложного срабатывания устройства при постороннем влиянии источников света. Работают подобные датчики и при низких температурах. В этих условиях на них надевают термокожухи.

Что представляют собой оптические бесконтрольные датчики? Это электронная схема, реагирующая на изменение того светового потока, который падает на приемник. Подобный принцип действия позволяет зафиксировать наличие или же отсутствие объекта в той или иной пространственной области.

В конструкции оптических бесконтактных датчиков имеется два основных блока. Один из них - источник излучения, а второй - приемник. Они могут находиться как в одном, так и в различных корпусах.

При рассмотрении принципа действия бесконтактного датчика можно выделить три типа оптических устройств:

  1. Барьерный. Работа оптических выключателей такого типа (Т) осуществляется на прямом луче. При этом приборы состоят из двух отдельных частей - передатчика и приемника, располагающихся соосно друг относительно друга. Тот поток излучения, который испускается излучателем, должен быть направлен точно в приемник. При прерывании луча объектом выключатель срабатывает. Такие датчики имеют хорошую помехозащищенность. Кроме этого, им не страшны ни капли дождя, ни пыль и т. д.
  2. Диффузный. Работа оптических выключателей типа D основана на использовании отраженного от объекта луча. Приемник и передатчик такого устройства располагают в одном корпусе. Излучателем направляется поток на объект. Луч, отражаясь от его поверхности, распределяется в различных направлениях. При этом часть потока возвращается назад, где и улавливается приемником. В результате выключатель срабатывает.
  3. Рефлекторный. Такие оптические бесконтактные датчики относятся к типу R. В них используется луч, отраженный от рефлектора. Приемник и излучатель такого устройства также располагаются в одном корпусе. При попадании на рефлектор луч отражается, оказывается в зоне приемника, в результате чего и происходит срабатывание устройства. Такие приборы действуют при расстоянии до объекта не более 10 метров. Возможно, их применение для фиксации полупрозрачных предметов.

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих - катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один - непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса.

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Бесконтактный датчик температуры магниточувствительного типа применяют:

На химических и металлургических производствах;

В районах Крайнего Севера;

На подвижном составе;

В холодильных установках;

На автокранах;

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

Суммарного излучения, измеряющими полную тепловую энергию тела;

Частичного излучения, измеряющие энергию ограниченного приемником участка;

Спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

Включать и выключать свет;

Регулировать яркость;

Контролировать работу отопительных приборов, сообщая об изменениях температуры;

Открывать и закрывать жалюзи;

Включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Понятие датчика

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:

Зрение Глаза

Слух Уши

Вкус Язык

Обоняние Нос

Осязание Кожа

Однако для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.

Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п..

2. Принцип действия и классификация

Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.

3. Основные виды:

3.1. Температурные датчики

С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных.

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления, которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.

Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

3.2. Оптические датчики.

Подобно температурным оптические датчики отличаются большим разнообразием и массовостью применения по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических. Фотогальваническая эмиссия, или внешний фотоэффект,0 - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна1hc/л0 (где1h0 - постоянная Планка,1с0 - скорость света,1л0 - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэффект,0 - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости,- ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).

Фотогальванический эффект 0 заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Пироэлектрические эффекты 0 - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики. Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне.

Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра. Основные преимущества перед датчиками других типов:

1. Возможность бесконтактного обнаружения.

2. Возможность (при соответствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми размерами.

3. Высокая скорость отклика.

4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые), обеспечивающей малые размеры и большой срок службы.

5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д. Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры(при полупроводниковой основе).

3.3. Датчики давления.

В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.

В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с 1 n 0-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие 1p 0-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается.

Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы. Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.

3.4. Датчики влажности и газовые анализаторы.

Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности, или устройства, работающие по принципу каталитического горения. При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.

3.5. Магнитные датчики.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.

Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам. Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.

Список использованной литературы

1. Како Н., Яманэ Я. Датчики и микро-ЭВМ. Л: Энерго атом издат, 1986г.

2. У.Титце, К.Шенк. Полупроводниковая схемотехника. М: Мир, 1982г.

3. П.Хоровиц, У.Хилл. Искусство схемотехники т.2, М: Мир, 1984г.

4. Справочная книга радиолюбителя-конструктора. М: Радио и связь, 1990г.